Effects of surface substances of untransformed fibroblastic cells on the adhesion and proliferation of neighboring cells: a study using fixed confluent cell sheets.

نویسندگان

  • A Okuda
  • M Sasaki
  • G Kimura
چکیده

To study the effects of surface materials of cells on the behavior of other neighboring cells in a crowded culture, confluent sheets of rat 3Y1 fibroblasts were fixed and then 3Y1 cells were seeded on to them. Among confluent sheets unfixed, fixed with formalin and fixed with ethanol and an empty plastic dish surface, the substrate activity to permit cell adhesion was compared. After confluent 3Y1 cells (mainly composed of cells with a G1-DNA content) were reseeded with fresh medium on to these substrates, the capacity to initiate DNA synthesis per attached cell was also compared. The substrate activity of the ethanol-fixed cell sheet to permit cell adhesion was as high as that of the empty dish surface, whereas that of the unfixed cell sheet and that of the formalin-fixed cell sheet were low. When the ethanol-fixed cell sheet and the empty dish surface were coated with the ethanol extract of the unfixed cell sheet, the substrate activity diminished, indicating that during the fixation process with ethanol an adhesion-inhibitory factor (s) was removed. The capacity to initiate DNA synthesis of each cell that had completed adhesion and spreading on the cell sheets unfixed, fixed with formalin, and fixed with ethanol was lower compared to the cell that had adhered to the empty dish surface. We conclude that factors over the 3Y1 cell surface inhibit the overlapping cell adhesion and the proliferation of cells contacting each other, resulting in the ordered cell configuration in the confluent culture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Study of Collagen Immobilization on a Novel Nanocomposite to Enhance Cell Adhesion and Growth

Background: Surface properties of a biomaterial could be critical in determining biomaterial’s biocompatibility due to the fact that the first interactions between the biological environment and artificial materials are most likely occurred at material’s surface. In this study, the surface properties of a new nanocomposite (NC) polymeric material were modified by combining plasma treatment and...

متن کامل

Application of novel anodized titanium for enhanced recruitment of H9C2 cardiac myoblast

Objective(s):Anodized treated titanium surfaces, have been proposed as potential surfaces with better cell attachment capacities. We have investigated the adhesion and proliferation properties of H9C2 cardiac myoblasts on anodized treated titanium surface.  Materials and Methods: Surface topography and anodized tubules were examined by high-resolution scanning electron microscopy (SEM). Contro...

متن کامل

Selective Inhibitory Effect of Adenosine A1 Receptor Agonists on the Proliferation of Human Tumor Cell Lines

Background: In this study, the effects of three structural analogues of adenosine upon proliferation of human tumor cells were investigated. Previous research showed a cytotoxic effect of adenosine via A3 receptor and A1 receptor and sometimes this effect was receptor independent. The researches showed a differential cytotoxic effect of adenosine and its A3 agonists on cancerous cells, while ot...

متن کامل

Mesenchymal Stem Cell Purification from the Articular Cartilage Cell Culture

Objective Articular cartilage as an avascular skeletal tissue possesses limited capacity to heal. On the other hand, it is believed that the regeneration capacity of each tissue is largely related to its stem cell contents. Little is known about the presence of mesenchymal stem cells in articular cartilage tissue. This subject is investigated in the present study. Materials and Methods Artic...

متن کامل

High Quality of Infant Chondrocytes in Comparison with Adult Chondrocytes for Cartilage Tissue Engineering

BACKGROUND Tissue engineering is used for the treatment of many diseases, and the ideal cell source for cartilage tissue engineering is chondrocytes. The main limitation of chondrocyte is the low number of cells in cartilage tissue engineering. This study investigated a suitable cell source with high proliferation rate to obtain a large number of chondrocytes. METHODS Adult cartilage t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell structure and function

دوره 15 5  شماره 

صفحات  -

تاریخ انتشار 1990